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Fusion Powers the Sun and Stars
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e Light nuclei release substantial energy when
fused into heavier nuclei

— Proton-proton and CNO fusion cycle in stars
— D-Treaction promising for fusion energy

e Essentially limitless supply and potentially
benign environmental impact make fusion
energy very appeadling, despite challenges
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Basic Physics of Fusion

* Fusion reaction rates peak at high energy (D-T
~70keV=~800 million C)

— High energy needed to overcome Coulomb
repulsion

— Even at peak fusion rate, cross section for fusion <<
Coulomb scattering

» Beam-target can produce fusion, but very difficult to
produce net energy gain

= lons must be confined for several collisions 10%

» Distribution will be approximately thermal, or 10’ 10 10 10°
Maxwellian (thermonuclear) temperalure  keV )

= At the necessary temperature, you have a plasma
o T>>jonization energy

-h
o

-
o
-

reactionrate<ocv=(ma3/sec)

 Much of the physics involved in fusion is high temperature plasma physics
— Broad applications across many phenomena

— > 99% of universe is plasma, rocky planets are exceptions (lightning, fluorescent
lights)
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Approaches to Confining a Hot Plasma

Magnetic ® AISO O'I'her
(FORSHment S variations such
Magnetic as electrostatic,

N“g)"“i__ | = Field MTF
3= _ e Here we'll focus
e Y /'gr‘w,,g“v’ on magnetic
N iy confinement
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| confinement ~ Must close ends,
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or...
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Toroidally Closed Magnetic Field Requires

Helicity for Particle Confinement

p.=v,./Q =cNTm/eB

With toroidal field ~ Current supplies
alone the electrons and | IRERC
ions drift in opposite
directions. A helical
field prevents particle
loss by averaging out
the drift.

The sources of that
helical field defines the
different toroidal
confinement devices.

EXB drift due to
rancn
v cuB x VB Vo E xB cleciric. field
VB 2 E — 2
eB B
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Two Promising Approaches are the

Tokamak and Stellerator

Stellarators have (near) zero toroidal Tokama_ks use a large toroid_al
field, and impose the helical twist current in the plasma to obtain the
externally. helical field.

Complex coil systems. Simple coil systems.

Weak/no current driven instabilities. Current driven Instabilities.

Related approaches include spheromaks,
RFPs, FRCs
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World Tokamak Research Programs

-Significant research programs in several countries
-Seven entities below partnering to focus on ITER project

Early realization of
fusion power (~3GW)

Stellarator
community

DI (1978-)
INAZ 2T
(GA)
—
NSTX (1993-) 1 1IMAQ.3T JET (1983-) . SMAZ.6T
( {EURATOM)

1988-) ' 2MAM 5T

(PPPL)
Alcater C-MOD : 2. 8MAST \ R
? . {(France, Caca:a::-é;-

ITER support research
ITER

_‘rr”““':' SMALT supplement
{JAERI)
{ )
research
— "
-
s

(MIT)

) . O.BMAST

£o12345 us .lwmw‘;,,g

Major Radius {m)
Y . SDEX-U (1990-): 1.6MA/IOT
f((..rm:"y Max Pland
ST (1999-) : 2MAD.5T

HT-TU IMAAST
|exp octed . 2006)
[IPP Hafai)

i \-l» M-I (1S8R 005pkanned )
O SMABT (Kwushu U

q "v ;"'a?}:f.' Rrememid | ‘m T IL-2A :1.5MABT(2003-)
s ' TCV (1992-) 1.2MAJ15T {SWIP)
) I I - (1986-) - 0. 14MAS1 5T |(aw1‘c':wd-a.4.u'"c - 6t
nnity) " 118966 5 o 2
GLOBUS- o | FTU (1889-) © 1.2MAS7 5T g l.|’;:.ﬁLﬁ4 g omaat L‘-av Radius (m) Japan
. l ‘0 SMAD 'l(di— {haty, Frascati) o i
| 1eTToK- o HL1M (1884 : 0.35MAQT
Y75.) - OBSMAS AT S o (s
o Fpalidir fhtehs ® | (PorugalisT) I L
sy 8 o1234as5 CHINA
B FT-2(1981-) DY Z2I3 85 EU Major Radhus (m) s
:0.06MAD ST (ioffe) : ) CSTAR: IMAG ST
l Major Radius (m) / — . \nder CosyULion
3 1900-) €BEl)
! M-\. T m» \_J
J” 0 2207 % ,‘—‘1—;—1—‘— KOREA * National Centralized Tokamak (National)
cer mu:ruelon = 5 =
A 9, Major Radius (m) *JA-EU satellite tokamak (international)

giaras - Russia
L.l . india|] 2

Msajor radus (m)

~
01234
Mojor e d . , .
R Red cross section is super-conducting tokama
0:0 GENERAL ATOMICS




Tokamak Fusion has Made Substantial

Progress
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* Faster than Moore’s Law, approaching Q=1
* ITER designed for ~400MW, Q~5-10
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Optimizing Large and Small Scale Physics

Key to Fusion Performance

Pﬁ‘s «nTt, *« B*Br,

loss

« Macroscopic Stability
— p’ and j provide free energy for MHD instabilities

— Equilibrium spatial scales
— Low n MHD codes

=>“p limits” - increase with broadness of pressure profile

* Microscopic Transport

— Microinstabilities associated with drift
motion

— Gyrokinetic theory, turbulence simulations,
gyroradius scales

=>“Stiff transport” - roughly fixed gradient scale length

Will focus on physics at large and intermediate scales,
magnetohydrodynamcis (MHD)
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Ouvutline: Physics Issues for Optimizing

Tokamak Fusion Performance

e Global pressure limits
— MHD physics, kink and ballooning modes
— Resistive Wall Modes
— Neoclassical Tearing Modes

* H-Mode and the edge fransport barrier
— Edge Localized Modes

e The Advanced Tokamak
— Steady state, high performance
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Fundamental Description of a Plasma

- Plasma kinetic equation

—fa(th)—f“+VVfa 9o (B4 yxB)-Vy fy =3 Co g fuur f5)
p

My

Maxwell’s equations 9B _ _VxE V-E=p,

ot

JE
pq=29affad3v VXB_O,,_—MOJ J=EQaffan3V
a a

- Contains all information about plasma dynamics (classical, non-
relativistic)

- Impossible to solve analytically in any but special cases

- Six dimensions and wide range of spatiotemporal scales makes
numerical solution impractical in all but simple cases

- Need to simplify for practical solution
— Gyrokinetics: averages over fast cyclotron timescale (5D)

— Fluid ("MHD?”): take moments of distribution functions (3D)
+ Useful for large scale physics, wide range of timescales
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Deriving MHD Equations

Define moments of distribution function

M, (x,t)= Ofof(x, v, )" dv

Knowledge of N moments allows (in principle) reconstruction
of fat N points in velocity space

N moments of plasma kinetic equation => N fluid equations
satisfied by M,

— Each additional moment equation yields more information
about velocity distribution

Use low order truncation and closures
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Deriving MHD Equations

Left with series of moment equations for
density, fluid velocity and temperature )
Viscous Stress

Z—n+V°nV=O Mn?=—Vp+JxB—V-H —
4 5

E=-VxB+nJ « Resistivity

DLV VT + (T =DnTV-V =~ =)V -q+ ([T =10

ot
q=-(x,-x )V,T -k VT

Ideal MHD omits oB VxE
diffusive terms, useful VR

for stlfdying_f_a:st, large u,J =V xB Thermal Anisotropy
scale instabilities
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MHD Instabilities
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MHD Instabilities: Kink and Ballooning Modes

* Current and Pressure \_/«
Gradient provide large vy
sources of freeenergy - s O [

° vl '.‘_"- LN

» Kink modes are current N\
driven o)

* Ballooning modes are L3
pressure driven UK .

— Variant of inferchange
mode, bad curvature

* In practice, external kinks

with both current and i

pressure drive often limiting | ¢

— Efficient numerical tools e/ 7 54
developed to calculate T

beta limits
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Good Agreement Between Predicted and

Observed MHD Beta Limits

Theory calculations (1982-1984), Troyon & Sykes

e Numerical calculations

suggest systematic g limit PT (%) < 2.8 Ia%% uk Define 3y = [37/(l/aB)
~ Good agreement with B 2.8 = Troyon-kink
multiple observations Bp I‘T 25 M)( ) 4.4 = Sykes-balloon
e Limit increases with strong FUSIO" power IST Bf
shaping and optimized Bootstrap fraction ce1/2
H 12 -
prOflleS Strait, APS Review 1993 DIII-D/,m\H
e Conducting wall near 10 - /./
plasma can stabilize modes, =35/
increase B, limit . s
: Br Y Pk
— Mode that results is slow () 67 /////:\1\ -
growing Resistive Walll NNy X
Mode o200
2 ASDEX
TOSCA
[ TFTR
0 .
0 2 3
l/aB (MA/m/T)
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Rapid Rotation Stabilizes RWM, allows High g

Operation

* External coils reduce error fields
(reduce magnetic drag) and permit
neutral beam to induce rapid rotation

5- / ‘_ﬁideal
Unstable (<10 Exaggerated) #OF_plasma pressure Reduced { Vall
99  Conventional Stability \Non-axisymnietric
Limit (Error) Fields:
/ . \ B 15F y; ]
T Pnowall | r
ol w\.«\:
e - l ~ Standard
1 Operation
0.0= :
Stable 0 1000 2000 3000 4000
Time (ms)
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Slower Expected Rotation on ITER Motivates RWM

Feedback Stabilization Research

* ITER base design includes control coils  RWM Coil Concept for ITER

— Error field correction: far behind vessel, blanket |
— Feedback controlled 3, = 2.5 = 2.9-3.3 X!

«USA use in-vessel coils behind shield |
— VALEN: plasma surface current model of

RWM + 3D structure circuit model ¢ o
~ Blanket= n=1 ideal-wall limit |))N zy Coil behind shield module
— Feedback controlled 3 = 2.5 =4 |

7 RWM Coils mounted behind the blanket in
every other port except NBI ports. (assumes 9
ms time constant for each blanket shield

qrowth rate [1's

Flded wali et

module)

Preliminary result: Successful RWM feedback stabilization

on DIII-D last week (turned neutral beam around to allow
low rotation)

J. Menard - U.S. Burning Plasma Workshop - December 7.9, 2005 - ORNL
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Magnetic Reconnection leads to Tearing

Modes which can Limit g below Ideal values

Island Formation at Rational Surface Helically Perturbed Pressure and
o ) Bootstrap Current
u 72—\ | P eneray
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NTMs Can Be Stabilized Via Carefully Aimed
Driven Current

DIILD Shot: 122889 SearchaSuppress
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Outline: Physics Issues for Optimizing

Tokamak Fusion Performance

e Global pressure limits
— MHD physics, kink and ballooning modes
— Resistive Wall Modes
— Neoclassical Tearing Modes

* H-Mode and the edge fransport barrier
— Edge Localized Modes

e The Advanced Tokamak
— Steady state, high performance
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High Performance via the Edge Transpori

Barrier

15
~~
>
D)
iy
N
L10
=
N —
<
S
D)
(¥
g 5 L-mode
= Plasma on open
surfaces must be

0 Normalized Radius (r/a) 1 cold

Stiff transport implies approximately fixed gradients in core
— L-mode: Better confinement requires bigger machine ($$%)
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High Performance via the Edge Transpori

Barrier

15
>
B,
L 10 Pedestal
I= width
g <+—>
S
£ 5
g Pedestal
height

O  Normalized Radius (1/a) 1

« Stiff transport implies approximately fixed gradients in core
— L-mode: Better confinement requires bigger machine ($$9)
« H-mode pedestal lifts whole profile (dramatic for fixed scale length)
— Profile broadening raises MHD beta limit
— “Height” of the pedestal key to performance
H-mode is reference operating mode for ITER and projected fusion reactors
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Physics of the Pedestal and ELMs

 ELMs and the edge pedesial [ T 77 pedestl
are key fusion plasma issues WW i
— “Pedestal Height” strongly impacts ol o
core confinement and therefore [ current A
fusion performance (Q) 20| X1
— ELM heat pulses impact plasma '
fCICiﬂg materials S8 oss 080 085 1.0
— Both very high priority for ITER normalized radius (r/a)
Przc;icted Impact of Pedestal Height Observed Impact of Pedestal Height
1 renorm GLF23 T .: ITER SHAPE, q__= 3.2, I, = 1.5MA
1 ] 1.6 |- i
20 : . T. Osborne
i npedflxed ] ol
151 = 1.2~
[ (=2]
O 5 _ ___________ E 0.8
i = + TYPE | ELMS
5:_ 0.4 < L-MODE
0 L~ . (0] | | |
0 0 2 4 6

P.PED(kPa, Averaged Over ELMs)
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The Peeling-Ballooning Model

Strong Shaping | - ELM Crash @
— ELM Recovery | = -

Peeling
Unstable

Jped
Jped

Ballooning

r .
Weak Shaping Unstable

Stable

Pied Pped n=18 mode structure

 ELMs caused by intermediate wavelength (n~3-30) MHD instabilities

— Driven by pressure gradient and current in the edge transport
barrier region
— Complex dependencies on v,, shape etc. due to bootstrap current

and “2nd stability”

0:0 GENERAL ATOMICS
Phil Snyder LANL 7.06



The Peeling-Ballooning Model: Validation

(D, (au) 97887 _ %" _DIII—D Shot 119748, Pedestal Stability just before ELM
- . M Q_ 10 T I T I T I T I T I T I
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—_ v 2 e
< 0.15 - —T - - = 2t .
8 [ ELITE Analysis B¢ < 06l
f [ n=10 s s -
g 2
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S S o | 8 1
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» Successful comparisons to expt both directly and in database studies

 MHD physics, taking into account two fluid effects, does a remarkably
good job of accounting for ELM onset and observed pedestal constraints

» Allows performance projections for ITER, though barrier width remains a
significant uncertainty
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Nonlinear Simulations of ELMs Exploring
Evolution and Heat Deposition

t=2106, surface of constant On

SOL

radius (m)

pedestal
M ~J
:

2.240

T IR A A A S AR A A I A A A |
1500 1600 1700

1800 1900 2000 2100

time (1/€2)

 Initial linear growth phase (n~20, y/v,~0.15), then fast radial burst begins at
t~2000, can see positive density (light) moving into SOL and negative
perturbed density near pedestal top

e Radial burst has filamentary structure, extended along B
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e n=10 structure on
outboard side

 Filaments
moving radially
outward
A. Kirk, MAST, PRL 92 (2004) 245002-1
M. Fenstermacher, DIlI-D, IAEA 2004 e ClI imqges from fast

camera on DIlI-D

4* n~18 inferred from
filament spacing

/

oON A~ O

2140 2150 2160 2170
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DIlI-D ELM Images Compared to Simulations

, Calculated Growth Rate Spectrum (ELITE, 119449) Fast CIII Image, DIII-D 119449
M0 prrr ELITE, n=18 M. Fenstermacher, DIII-D/LLNL

o N o ~
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=
(Sl

BOUT, nonlinear burst phase

Toroidal Mode Number (n) Perturbed Density, t=1392 (-.58 < dn/ng < 0.93)

e ELITE linear P-B calculations show peak
15<n<25; mode in this range predicted to be
first to go unstable

e Calculated n=18 structure qualitatively
similar to observations

* Nonlinear simulations show symmetric
stucture in early phase, extended uneven

filaments later 6 w
0.9 Pedestal 1.0 SsOL 11
Radius (Normalized Poloidal Flux)
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ELMs Successfully Suppressed Using Non-

Axisymmetric Magnetic Perturbation

‘ upper n=3, 60" phasing

* n=3 magnetic field from I-coil N30 )

perturbs plasma edge | "? —_— <X
+aa4%k - 0-| ' L
Hicol o - et Upper 0=90
. iy E———— . l-coil segment
5 A dlscharqe122337£ <Y + ’LJ [ .
4 lower div. D, - — R
gg 1013/ (cmé/sesr) 'E_, +HI W - [ — [+
12— A ] —i Iowernz.?-.r | ; N
10,07 'L.J',.' Y N 60° phasing By ‘ waer o =150
1.00 lrl |'|u,' ah I\.‘n‘yl"ﬁl.ln_ sensor |-coil segment
0.10 — Invvﬁ'(ped} .|'..‘_’J~_-’1'~\.\_,'M'|L- _ I:I'ER v.* = 0.06 ‘Jn" ] even up-down parity
T | e .
= | | ; . .
405 col | . <+ No degradation in core
E I 3 : :
~aF current (k&) 2 confinement or increase
j‘s’_ YERE in core radiation
4.0 z Qos ™ ™o . ! 3
3.5 E i Iy =
0 1000 2000 3000 4000 5000

Time (ms)

Pedestal pressure held below ELM stability limit
Transport physics not fully understood: Not simple stochastic transport
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Outline: Physics Issues for Optimizing

Tokamak Fusion Performance

e Global pressure limits
— MHD physics, kink and ballooning modes
— Resistive Wall Modes
— Neoclassical Tearing Modes

e H-Mode and the edge transport barrier
— Edge Localized Modes

* The Advanced Tokamak
— Steady state, high performance
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The Advanced Tokamak Concept Allows

High Performance, Steady State Operation

 Conventional Tokamak
— Current is inductively driven (pulsed operation)
- Low B (By~2). L-Mode confinement (no pedestal)

— Large machine required for power plant ($$)

 Advanced Tokamak (AT)

— Current is non-inductively driven (steady state)
e Substantial fraction is self-driven bootstrap current

— High B (By>~4), H-Mode or befter confinement (high
pedestal)

— Compact, high duty cycle power plant
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High B is Key to Success of Advanced

Tokamak

High @ is essential for high fusion power
in a compact machine (P;,,~V32B4)

High g (B,~BB%1?) also essential for

r Large Boolstrap Fraclion |Sleady State)

getting a high fraction of self-driven 0o

bootstrap current (fzs~¢f,) Lo W, {7

— High booftstrap fraction needed for ¢ “ *E_]
cost-effective steady state operation 5 e oo R

Similar physics which allows high ~

global g also allows high pedestal, 0 = — —

which leads to good confinement o

Optimizing normalized fy is essenfial,  ri 1. 4 compu oy suse ki e operion

both for high fusion performance and ppCrTgi buasd cornce, ik g
steady state: gains are multiplicative

ozo CENERAL ATOMICS

Phil Snyder LANL 7.06




Multiple Tools and Techniques Applied to

Optimize AT Performance

e Strong shaping allows high MHD b= (VaB)”
limits on global g AR (b)
— Current and pressure profile LN ’
optimization using neufral beams, - Na =07 @
ECCD, RF il
* RWM stabilized with rotation or e,
active feedback 1 ©
* NTM avoided via profile 2 3 4 5 6
optimization or stabilized with PO /(p)
ECCD

 Pedestal height optimized with
shaping, ELMs mitigated with
RMP or other techniques
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AT leads to sustained high performance on DIII-D

and good projections to ITER and fusion reactors

By ~4, By~ 4T%

4
Hyy > 2.5
fas > 60%, fy, > 80% 2
C-coil and I-coil used for 0
simultaneous feedback 0.8
control of error fields and RwWMm 0.4

0.0!

New tools in FY06-07 will help 3
advance the understanding of 2
RWM control a

— Balanced injection for ITER-
relevant rotation "

2

— Additional fast amplifiers 0.8

for larger control curents g 4"~ "f4§" " TER’ sicady-state scenano
with low latency 0.0C .
1.5 2.0 2.5 3.0 3.5
Time (s)

Phil Snyder LANL 7.06
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AT Regimes Project to Enhanced Capabilities for

ITER and Compact Power Plant Designs

* Performance at or above ITER * Projections of DIlI-D data
baseline maintained in suggest expanded
stationary conditions research opportunites in ITER
e —— 12 ‘
= Advanced Inductive (qg5 < 4) - b ITER ]
+ Hybrid (qq5 > 4) R - 10F  Baseline L 10 = =
; B [ (Qrys = 10) ®
. =4 . 0.8F a -
-.-f =} LI - LN 7 % 3 [ 4 » O .
. = ' = .". @ .- " i g &9 06’ ¢ Using FU‘“ “
_——ITER Baseline 4 2 | 2 [ Transformer Capability a,.=5
z ‘::;. Scenario Target ) ‘é, o® 04f ¢ ® fus
* o £ [
e - - 02} ® Projections Based on DIl-D Data ]
‘\
AUG ) [ ]
0.0 1 ) ) ) L
, . , 0 2 4 6 8 10 12
1 6 8 10 Neutron Fluence Per Pulse (10~ MW - year/m?)
tur™R Materials Testing

* ARIES AT reactor study projects 5¢/kWh

— Many materials engineering and physics issues to be
resolved
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* MHD physics allows understanding and control of
instabilities that govern tokamak performance

— Kinks, ballooning modes, RWMs, NTMs, ELMs

 Optimizing against these constraints using shaping
and profile control -> high performance

 Doing so in steady state capable scenarios with
high bootstrap current -> Advanced Tokamak

— High projected performance in ITER. Compact, cost -
effective reactor designs possible

— Many physics and engineering issues remain to be
addressed

ozo CENERAL ATOMICS




Sample of Key Open Issues

* Physics (fokamak)
— Full optimization of global beta limits (extreme shapes)
— Optimum RWM feedback control algorithm
— NTM physics at small island size
— Pedestal width and ELM suppression physics

— Optimize integrated long pulse AT operation
 ITER required to do so at reactor-like parameters

 Materials/Engineering (largely generic)

— High heat flux (~1TOMW/m?2), high neutron flux capable
materials
* Retain strength despite neutron activation
* Minimize tritium retention and production of activated wastes

— Develop efficient breeding blanket technology
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ITER is going forward: Will address physics and

materials issues in reactor scale device
* Cost sharing settled 2003

* |TER site decision (France)
made June 28,2005

* Negotiation of the final
agreement completed

- “Initialing™ May 2006
— Ratification Fall 2006

e Kaname lkeda of Japan
appointed director general
November 7, 2005

* EU, Japan, Russiq,
United States, Koreaq,
Chinag, India

 Opportunities to get involved both in national
fusion programs and in ITER
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